Coverings of Graphs and Maps, Orthogonality, and Eigenvectors
نویسنده
چکیده
Lifts of graph and map automorphisms can be described in terms of voltage assignments that are, in a sense, compatible with the automorphisms. We show that compatibility of ordinary voltage assignments in Abelian groups is related to orthogonality in certain Z-modules. For cyclic groups, compatibility turns out to be equivalent with the existence of eigenvectors of certain matrices that are naturally associated with graph automorphisms. This allows for a great simplification in characterizing compatible voltage assignments and has applications in constructions of highly symmetric graphs and maps.
منابع مشابه
HIGHER ORDER MATCHING POLYNOMIALS AND d-ORTHOGONALITY
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre poly...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملBranched coverings of maps and lifts of map homomorphisms
In this article we generalize both ordinary and permutation voltage constructions to obtain all branched coverings of maps. We approach a map as a set of flags together with three fixed-point-free involutions and relate this approach with other standard representations. We define a lift as a function from these flags into a group. Ordinary voltage and ordinary current assignments are special ca...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملRegular cyclic coverings of regular affine maps
The regular coverings of regular affine algebraic maps are considered, and a large family of totally ramified coverings—the so-called Steinberg and Accola coverings—are fully classified.
متن کامل